Footprinting protein–DNA complexes using the hydroxyl radical

Hydroxyl radical footprinting has been widely used for studying the structure of DNA and DNA–protein complexes. The high reactivity and lack of base specificity of the hydroxyl radical makes it an excellent probe for high-resolution footprinting of DNA–protein complexes; this technique can provide structural detail that is not achievable using DNase I footprinting. Hydroxyl radical footprinting experiments can be carried out using readily available and inexpensive reagents and lab equipment. This method involves using the hydroxyl radical to cleave a nucleic acid molecule that is bound to a protein, followed by separating the cleavage products on a denaturing electrophoresis gel to identify the protein-binding sites on the nucleic acid molecule. We describe a protocol for hydroxyl radical footprinting of DNA–protein complexes, along with a troubleshooting guide, that allows researchers to obtain efficient cleavage of DNA in the presence and absence of proteins. This protocol can be completed in 2 d.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 12 print issues and online access

265,23 € per year

only 22,10 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Analysis of protein-DNA interactions in chromatin by UV induced cross-linking and mass spectrometry

Article Open access 16 October 2020

Electro-elution-based purification of covalent DNA–protein cross-links

Article 18 June 2024

Deciphering molecular interactions by proximity labeling

Article 11 January 2021

References

  1. Tullius, T.D. Physical studies of protein-DNA complexes by footprinting. Annu. Rev. Biophys. Biophys. Chem.18, 213–237 (1989). ArticleCASPubMedGoogle Scholar
  2. Hampshire, A.J., Rusling, D.A., Broughton-Head, V.J. & Fox, K.R. Footprinting: a method for determining the sequence selectivity, affinity and kinetics of DNA-binding ligands. Methods42, 128–140 (2007). ArticleCASPubMedGoogle Scholar
  3. Adilakshmi, T., Lease, R.A. & Woodson, S.A. Hydroxyl radical footprinting in vivo: mapping macromolecular structures with synchrotron radiation. Nucleic Acids Res.34, e64 (2006). ArticlePubMedPubMed CentralGoogle Scholar
  4. Urbach, A.R. & Waring, M.J. Visualising DNA: footprinting and 1-2D gels. Mol. BioSyst.1, 287–293 (2005). ArticleCASPubMedGoogle Scholar
  5. Galas, D.J. & Schmitz, A. DNase footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res.5, 3157–3170 (1978). ArticleCASPubMedPubMed CentralGoogle Scholar
  6. Brenowitz, M., Senear, D.F., Shea, M.A. & Ackers, G.K. Quantitative DNase footprint titration: a method for studying protein-DNA interactions. Meth. Enzymol.130, 132–181 (1986). ArticleCASGoogle Scholar
  7. Drew, H.R. & Travers, A.A. DNA structural variations in the E. coli tyrT promoter. Cell37, 491–502 (1984). ArticleCASPubMedGoogle Scholar
  8. Sawadogo, M. & Roeder, R.G. Interaction of a gene-specific transcription factor with the adenovirus major late promoter upstream of the TATA box region. Cell43, 165–175 (1985). ArticleCASPubMedGoogle Scholar
  9. Tullius, T.D., Dombroski, B.A., Churchill, M.E. & Kam, L. Hydroxyl radical footprinting: a high-resolution method for mapping protein-DNA contacts. Meth. Enzymol.155, 537–558 (1987). ArticleCASGoogle Scholar
  10. Tullius, T.D. & Dombroski, B.A. Hydroxyl radical 'footprinting': high-resolution information about DNA-protein contacts and application to Lambda repressor and Cro protein. Proc. Natl. Acad. Sci. USA83, 5469–5473 (1986). ArticleCASPubMedPubMed CentralGoogle Scholar
  11. Tullius, T.D. DNA footprinting with hydroxyl radical. Nature332, 663–664 (1988). ArticleCASPubMedGoogle Scholar
  12. Pogozelski, W.K. & Tullius, T.D. Oxidative strand scission of nucleic acids: routes initiated by hydrogen abstraction from the sugar moiety. Chem. Rev.98, 1089–1108 (1998). ArticleCASPubMedGoogle Scholar
  13. Price, M.A. & Tullius, T.D. Using hydroxyl radical to probe DNA structure. Meth. Enzymol.212, 194–219 (1992). ArticleCASGoogle Scholar
  14. Price, M.A. & Tullius, T.D. How the structure of an adenine tract depends on sequence context: a new model for the structure of TnAn DNA sequences. Biochemistry32, 127–136 (1993). ArticleCASPubMedGoogle Scholar
  15. Ganunis, R.M., Guo, H. & Tullius, T.D. Effect of the crystallizing agent 2-methyl-2,4-pentanediol on the structure of adenine tract DNA in solution. Biochemistry35, 13729–13732 (1996). ArticleCASPubMedGoogle Scholar
  16. Churchill, M.E., Tullius, T.D., Kallenbach, N.R. & Seeman, N.C. Holliday recombination intermediate is twofold symmetric. Proc. Natl. Acad. Sci. USA85, 4653–4656 (1988). ArticleCASPubMedPubMed CentralGoogle Scholar
  17. Tullius, T.D. & Greenbaum, J.A. Mapping nucleic acid structure by hydroxyl radical cleavage. Curr. Opin. Chem. Biol.9, 127–134 (2005). ArticleCASPubMedGoogle Scholar
  18. Churchill, M.E., Hayes, J.J. & Tullius, T.D. Detection of drug binding sites by hydroxyl radical footprinting. Relationship of distamycin binding to nucleosome positions on the 5S RNA gene of Xenopus. Biochemistry29, 6043–6050 (1990). ArticleCASPubMedGoogle Scholar
  19. Mah, S.C., Townsend, C.A. & Tullius, T.D. Hydroxyl radical footprinting of calicheamicin. Relationship of DNA binding to cleavage. Biochemistry33, 614–621 (1994). ArticleCASPubMedGoogle Scholar
  20. Tullius, T.D. & Dombroski, B.A. Iron(II) EDTA used to measure the helical twist along any DNA molecule. Science230, 679–681 (1985). ArticleCASPubMedGoogle Scholar
  21. Udenfriend, S., Clark, C.T., Axelrod, J. & Brodie, B.B. Ascorbic acid in aromatic hydroxylation. I. A model system for aromatic hydroxylation. J. Biol. Chem.208, 731–740 (1954). CASPubMedGoogle Scholar
  22. Fenton, H.J.H. Oxidation of tartaric acid in the presence of iron. J. Chem. Soc.65, 899–910 (1894). ArticleCASGoogle Scholar
  23. Shcherbakova, I., Mitra, S., Beer, R.H. & Brenowitz, M. Fast Fenton footprinting: a laboratory-based method for the time-resolved analysis of DNA, RNA and proteins. Nucleic Acids Res.34, e48 (2006). ArticlePubMedPubMed CentralGoogle Scholar
  24. Shcherbakova, I. & Brenowitz, M. Monitoring structural changes in nucleic acids with single residue spatial and millisecond time resolution by quantitative hydroxyl radical footprinting. Nat. Protoc.3, 288–302 (2008). ArticleCASPubMedGoogle Scholar
  25. Hayes, J.J., Kam, L. & Tullius, T.D. Footprinting protein-DNA complexes with gamma-rays. Meth. Enzymol.186, 545–549 (1990). ArticleCASGoogle Scholar
  26. Ottinger, L.M. & Tullius, T.D. High-resolution in vivo footprinting of a protein-DNA complex using γ-radiation. J. Am. Chem. Soc.122, 5901–5902 (2000). ArticleCASGoogle Scholar
  27. Greenbaum, J.A., Pang, B. & Tullius, T.D. Construction of a genome-scale structural map at single-nucleotide resolution. Genome Res.17, 947–953 (2007). ArticleCASPubMedPubMed CentralGoogle Scholar
  28. Greenbaum, J.A., Parker, S.C. & Tullius, T.D. Detection of DNA structural motifs in functional genomic elements. Genome Res.17, 940–946 (2007). ArticleCASPubMedPubMed CentralGoogle Scholar
  29. Steitz, T.A. Structural studies of protein-nucleic acid interactions: the sources of sequence specific binding. Q. Rev. Biophys.23, 205–280 (1990). ArticleCASPubMedGoogle Scholar
  30. Pabo, C.O. & Sauer, R.T. Transcription factors: structural families and principles of DNA recognition. Annu. Rev. Biochem.61, 1053–1095 (1992). ArticleCASPubMedGoogle Scholar
  31. Carey, J. Gel retardation. Meth. Enzymol.208, 103–117 (1991). ArticleCASGoogle Scholar
  32. Lane, D., Prentki, P. & Chandler, M. Use of gel retardation to analyze protein-nucleic acid interactions. Microbiol. Rev.56, 509–528 (1992). CASPubMedPubMed CentralGoogle Scholar
  33. Fried, M.G. Measurement of protein-DNA interaction parameters by electrophoresis mobility shift assay. Electrophoresis10, 366–376 (1989). ArticleCASPubMedGoogle Scholar
  34. Garner, M.M. & Revzin, A. The use of gel electrophoresis to detect and study nucleic acid-protein interactions. Trends Biochem. Sci.11, 395–396 (1986). ArticleCASGoogle Scholar
  35. Fried, M.G. & Crothers, D.M. Equilibria and kinetics of Lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res.9, 6505–6525 (1981). ArticleCASPubMedPubMed CentralGoogle Scholar
  36. Hellman, L.M. & Fried, M.G. Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat. Protoc.2, 1849–1861 (2007). ArticleCASPubMedPubMed CentralGoogle Scholar
  37. Woodbury, C.P. Jr. & von Hippel, P.H. On the determination of deoxyribonucleic acid-protein interaction parameters using the nitrocellulose filter-binding assay. Biochemistry22, 4730–4737 (1983). ArticleCASPubMedGoogle Scholar
  38. Nirenberg, M. & Leder, P. RNA codewords of protein synthesis. Science145, 1399–1407 (1964). ArticleCASPubMedGoogle Scholar
  39. Jones, O.W. & Berg, P. Studies on the binding of RNA polymerase to polynucleotides. J. Mol. Biol.22, 199–209 (1966). ArticleCASPubMedGoogle Scholar
  40. Yarus, M. & Berg, P. Recognition of tRNA by aminoacyl tRNA synthetases. J. Mol. Biol.28, 479–490 (1967). ArticleCASPubMedGoogle Scholar
  41. Vrana, K.E., Churchill, M.E., Tullius, T.D. & Brown, D.D. Mapping functional regions of transcription factor TFIIIA. Mol. Cell. Biol.8, 1684–1696 (1988). ArticleCASPubMedPubMed CentralGoogle Scholar
  42. Hayes, J.J., Tullius, T.D. & Wolffe, A.P. The structure of DNA in a nucleosome. Proc. Natl. Acad. Sci. USA87, 7405–7409 (1990). ArticleCASPubMedPubMed CentralGoogle Scholar
  43. Dixon, W.J., Inouye, C., Karin, M. & Tullius, T.D. CUP2 binds in a bipartite manner to upstream activation sequence c in the promoter of the yeast copper metallothionein gene. J. Biol. Inorg. Chem.1, 451–459 (1996). ArticleCASGoogle Scholar
  44. Jamison McDaniels, C.P., Jensen, L.T., Srinivasan, C., Winge, D.R. & Tullius, T.D. The yeast transcription factor Mac1 binds to DNA in a modular fashion. J. Biol. Chem.274, 26962–26967 (1999). ArticleCASPubMedGoogle Scholar
  45. Bashkin, J.S., Hayes, J.J., Tullius, T.D. & Wolffe, A.P. Structure of DNA in a nucleosome core at high salt concentration and at high temperature. Biochemistry32, 1895–1898 (1993). ArticleCASPubMedGoogle Scholar
  46. Widlund, H.R. et al. Nucleosome structural features and intrinsic properties of the TATAAACGCC repeat sequence. J. Biol. Chem.274, 31847–31852 (1999). ArticleCASPubMedGoogle Scholar
  47. Draganescu, A., Levin, J.R. & Tullius, T.D. Homeodomain proteins: what governs their ability to recognize specific DNA sequences? J. Mol. Biol.250, 595–608 (1995). ArticleCASPubMedGoogle Scholar
  48. Kimball, A.S., Milman, G. & Tullius, T.D. High-resolution footprints of the DNA-binding domain of Epstein-Barr virus nuclear antigen 1. Mol. Cell. Biol.9, 2738–2742 (1989). ArticleCASPubMedPubMed CentralGoogle Scholar
  49. Danford, A.J., Wang, D., Wang, Q., Tullius, T.D. & Lippard, S.J. Platinum anticancer drug damage enforces a particular rotational setting of DNA in nucleosomes. Proc. Natl. Acad. Sci. USA102, 12311–12316 (2005). ArticleCASPubMedPubMed CentralGoogle Scholar
  50. Draganescu, A. & Tullius, T.D. The DNA binding specificity of engrailed homeodomain. J. Mol. Biol.276, 529–536 (1998). ArticleCASPubMedGoogle Scholar
  51. Buchman, C., Skroch, P., Dixon, W.J., Tullius, T.D. & Karin, M. A single amino acid change in CUP2 alters its mode of DNA binding. Mol. Cell. Biol.10, 4778–4787 (1990). ArticleCASPubMedPubMed CentralGoogle Scholar
  52. Kimball, A.S., Kimball, M.L., Jayaram, M. & Tullius, T.D. Chemical probe and missing nucleoside analysis of Flp recombinase bound to the recombination target sequence. Nucleic Acids Res.23, 3009–3017 (1995). ArticleCASPubMedPubMed CentralGoogle Scholar
  53. Dixon, W.J. et al. Hydroxyl radical footprinting. Meth. Enzymol.208, 380–413 (1991). ArticleCASGoogle Scholar
  54. Lutter, L.C. Precise location of DNase I cutting sites in the nucleosome core determined by high resolution gel electrophoresis. Nucleic Acids Res.6, 41–56 (1979). ArticleCASPubMedPubMed CentralGoogle Scholar
  55. Maxam, A.M. & Gilbert, W. Sequencing end-labeled DNA with base specific chemical cleavages. Meth. Enzymol.65, 499–560 (1980). ArticleCASGoogle Scholar
  56. Das, R., Laederach, A., Pearlman, S.M., Herschlag, D. & Altman, R.B. SAFA: semi-automated footprinting analysis software for high-throughput quantification of nucleic acid footprinting experiments. RNA11, 344–354 (2005). ArticleCASPubMedPubMed CentralGoogle Scholar
  57. Current Protocols in Nucleic Acid Chemistry (ed. Harkins, E.W.) (John Wiley & Sons, Inc., Somerset, New Jersey, 2005).
  58. Vinson, C.R., Sigler, P.B. & McKnight, S.L. Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science246, 911–916 (1989). ArticleCASPubMedGoogle Scholar
  59. Dixon, W.J. Determination of the protein-DNA interactions of two transcription activators, the yeast Copper Protein 2 and the human Growth Hormone Factor 1. DNA-binding models for the Copper "Fist" and POU domain. (Dissertation) (The Johns Hopkins University, Baltimore, Maryland, 1992). Google Scholar
  60. Balasubramanian, B., Pogozelski, W.K. & Tullius, T.D. DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone. Proc. Natl. Acad. Sci. USA95, 9738–9743 (1998). ArticleCASPubMedPubMed CentralGoogle Scholar
  61. Shadle, S.E. et al. Quantitative analysis of electrophoresis data: novel curve fitting methodology and its application to the determination of protein-DNA binding constant. Nucleic Acids Res.25, 850–860 (1997). ArticleCASPubMedPubMed CentralGoogle Scholar

Acknowledgements

We thank Dr. Wendy Dixon for producing the CUP2 footprint shown in Figure 2.